Comment on “Universality of Returning Electron Wave Packet in High-Order Harmonic Generation with Midinfrared Laser Pulses”

In Ref. [1], Le et al. establish in the long-wavelength limit a universal shape for the returning electron wave packet in high-order harmonic generation (HHG) as a function of the returning electron’s energy. Based on this approach, Le et al. suggest a universal wavelength scaling law, $\propto \lambda^{-4.2}$, for the HHG yield for laser wavelengths in the range $3 \mu m \leq \lambda \leq 6 \mu m$. This scaling law differs from the faster decrease of the HHG yield with increasing λ, $\propto \lambda^{-5.6}$, predicted earlier [2–5]. Le et al. attribute this difference to the limited interval of wavelengths ($\lambda \leq 2 \mu m$) used to solve the time-dependent Schrödinger equation (TDSE) in Refs. [2,3,5]. Since the HHG yield is a fundamental quantity for practical applications, any new scaling law for $\lambda \gtrsim 3 \mu m$ must be clearly justified owing to its importance for planning experiments involving the generation of extreme ultraviolet radiation by means of HHG using long-wavelength lasers.

The apparent disagreement stems from the use in Ref. [1] of a different definition of the harmonic yield ΔY from that used in Refs. [2–5]. As noted in Ref. [5], the λ-scaling law depends on the precise definition of ΔY. In Ref. [2], the authors study “the scaling of an average harmonic yield, obtained by integrating the power spectrum over a fixed bandwidth.” (They integrate the HHG power spectrum over harmonic energy intervals of 40–80 eV for He and 20–50 eV for Ar.) In Ref. [4], the definition of harmonic yield from Ref. [2] was adopted for a monochromatic field, defining the yield ΔY in terms of the HHG power. For a short-pulse laser field, in Refs. [3,5], a definition of the HHG yield compatible with that in Ref. [2] is used; i.e., ΔY is defined as the energy radiated per unit time by the target atom (subjected to a laser pulse of duration T) into a fixed harmonic energy range $[\Omega_1, \Omega_2]$:

$$\Delta Y = \frac{1}{T} \int^{(\Omega_2)}_{\Omega_1} \rho(\Omega) d\Omega,$$

where $\rho(\Omega)$ is the spectral density of harmonics with energy Ω. (Although Ref. [3] properly defines the HHG yield in words, the factor $1/T$ was inadvertently omitted in Eq. (2) of Ref. [3]; this omission was corrected in Eq. (3) of Ref. [5].) Since the laser pulse has a fixed number N of optical cycles, T scales linearly with λ. By inserting the recolliding wave packet results of Ref. [1] into Eq. (1), the scaling $\Delta Y \propto \lambda^{-5.2}$ found in Refs. [2–5] is confirmed.

In conclusion, we have shown that when the same definition for the HHG yield is used [cf. Eq. (1)], the results of Ref. [1] give the same scaling law found earlier in Refs. [2–5] for wavelengths $\lambda \leq 2 \mu m$. We note that this latter scaling law can be obtained analytically by using results of the model developed in Ref. [6] for the description of short-pulse HHG spectra. These analytic results as well as new numerical TDSE results for longer wavelengths, $\lambda \leq 4 \mu m$, will be published elsewhere.

This work was supported in part by NSF Grant No. PHY-1125915, RFBR Grant No. 13-02-00420, Ministry of Education & Science of the Russian Federation Project No. 1019, NSF Grant No. PHY-1208059, NNSFC Grants No. 11322437 and No. 11121091, Program 973 No. 2013CB922402, SFB-NEXTLITE (FWF, Austria), and the Dynasty Foundation (M. V. F.).

M. V. Frolov,1,2 N. L. Manakov,1 Wei-Hao Xiong,3 Liang-You Peng,3,4,2 J. Burgdörfer5,2 and Anthony F. Starace6,2

1Department of Physics, Voronezh State University
Voronezh 394006, Russia
2Kavli Institute for Theoretical Physics
University of California
Santa Barbara, California 93106-4030, USA
3State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University
Beijing 100871, China
4Collaborative Innovation Center of Quantum Matter
Beijing 100871, China
5Institute for Theoretical Physics
Vienna University of Technology
Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria, EU
6Department of Physics and Astronomy
The University of Nebraska
Lincoln, Nebraska 68588-0299, USA

Received 18 August 2014; published 9 February 2015
DOI: 10.1103/PhysRevLett.114.069301
PACS numbers: 33.80.Eh, 42.65.Ky